

2

Welcome
The App Design Workbook guides you through the app design
cycle to help you bring your iOS app ideas to life. You’ll define,
prototype, test, validate and iterate on your design as you relate
your design concept to the Swift code that powers iOS apps.

App designers spend a lot of time getting the look and feel of their
app just right. But that’s just one part of a much longer process.
And design isn’t linear; the best designs are refined and improved
over time. Good app design begins with understanding the user,
and extends to every decision you make, both big and small.

Behind every great app is an individual or team that started with an
idea and a commitment to improve and refine it, step by step. Get
ready — you’re about to take the first step in a rewarding journey. App Design Cycle

3

How to Use This Workbook
This workbook is designed so that you can customise it as you go. The result will be unique to you and your app, and it will reflect all the decisions you make
along the way. You can add notes and highlighting to exercises and bring in your own images and other resources.

Templates
Some slides include templates that you’ll fill out. Make as many copies
as you need.

Prototype exercises
Slides marked with the app prototype icon indicate that you’ll work in
a separate Keynote document to build your prototype.

Code explorations
Slides marked with the Swift Playgrounds app icon indicate that
you’ll dive into code in Swift Playgrounds.

What You’ll Need
Swift Playgrounds
Swift Playgrounds is a revolutionary app for iPad and Mac that helps you  
learn and explore coding in Swift, the same powerful language used to create  
world-class apps for the App Store. You’ll use Swift Playgrounds in optional  
coding explorations in this workbook, diving into code to learn concepts that  
relate directly to your app. Download Swift Playgrounds for Mac >

Go Green prototype
The examples in this workbook are based on Go Green — a demonstration app
prototype in a Keynote file. To simulate the app, play the slideshow and click to
advance through screens. Download the Go Green app prototype >

iOS Keynote Kit
You’ll use a library of iOS interface elements to build your Keynote prototype.
Download the iOS Keynote Kit >

4

Download the Go Green app prototype >

Download the iOS Keynote Kit >

Download Swift Playgrounds for Mac >

https://apps.apple.com/us/app/swift-playgrounds/id1496833156?mt=12
http://education-static.apple.com/coding-club-kit/xcode-prototype.key
https://devimages-cdn.apple.com/design/resources/download/iOS-13-Keynote.dmg
https://www.apple.com/au/education/docs/swift-club-xcode-AU.pdf
https://devimages-cdn.apple.com/design/resources/download/iOS-13-Keynote.dmg
https://apps.apple.com/au/app/swift-playgrounds/id1496833156?mt=12

5

Keynote Basics
Before you start, make sure you’re familiar with the basics of navigating Keynote.  
To see the navigator, click the icon in the toolbar or the View menu, and choose
Navigator. Groups of slides have a disclosure indicator for hidden () or visible ()
content. To show or hide slides in a group, click the disclosure indicator.

To move a slide, click and drag it in the navigator. To duplicate a slide, select it in the
navigator, then choose Edit > Duplicate Selection or press Command ()-D.

Fill out templates by editing text in boxes. To edit the text in a box, double-click it.

Add images to placeholders by dragging and dropping.

Remember: You can always undo mistakes by choosing Edit > Undo or by pressing
Command ()-Z.

! ! ! ! !
App Design Cycle

6

Discover
• Observe
• Explore Your Users
• Consider Diversity
• Summarise Your Audience

Analyse
• Analyse Causes
• Research Competitors
• Leverage Capabilities

Plan
• Find Differentiators
• Define Features
• Prioritise Features
• Describe Key Functions
• Define an MVP

Map
• Outline Screens
• Group Screens
• Link Screens

Wireframe
• Create Tabs
• Add Navigation
• Create Modals
• Add Interface Elements

Refine
• Tap Targets
• Content Insets
• Weight and Balance
• Alignment

Style
• Personality
• Icon

Prototype
Architect
• Define Tests
• Create User Journeys
• Define a Process
• Plan an Introduction

Script
• Outline Scripts
• Write Scripts
• Anticipate Errors

Prepare
• Gather Users
• Last Check

Test
Validate
• Gather Notes
• Form Key Insights
• Draw Conclusions

Validate
Iterate
• Organise Your Conclusions
• Go Back: Define
• Go Back: Prototype
• Go Back: Test

IterateDefine

Define
Your journey starts by defining your app. An initial discovery process will
help you identify the challenge you want to solve and understand your
audience. Then you’ll analyse how an app can tackle the challenge before
building towards a list of goals, features and key functions.

7

!Define

You’ll begin by identifying a challenge and the people it affects. By the
end of this stage, you’ll have a thorough understanding of a challenge,
and an insight into the people who would benefit from a solution.

Be observant and keep an open mind. The questions you ask — and
the scenarios and points of view you imagine — will determine the
direction of your app and its ultimate success.

Even if you already have an idea for your app, the following exercises
can help you validate your current thinking.

DiscoverObserve
Explore Your Users
Consider Diversity
Summarise Your Audience

8

Are there questions you or others think about often?

What challenges do you or others face in your daily lives?

Have you or others used workarounds in existing apps?

Are there apps that partially address a challenge, but that require you to use them in unintended ways or
augment their capabilities using other apps or activities?

Observe
Spark your imagination. People who
create great apps are often motivated
by addressing a challenge that they
or their community experience.

Create as many copies of this slide
as necessary to capture your
thoughts. Don’t try to filter them too
much! You never know which one  
will lead you to a great app idea.

Define | Discover 9

Explore Code

In this exercise, you’ll:

• Write your first line of code.

• Print a message to the console.

Hello, World!
You’re using the App Design Workbook because you have an idea that you want to turn into
an app. But design isn’t the whole story — every app is built with code. The design and code
of an app are related. Maybe more closely than you might imagine.

If you’re new to coding, it might seem mysterious and complex. While it takes some time 
to learn the skills necessary to build an app from top to bottom, the basic concepts and
practices are easy to understand. The perspective you get from understanding even a little 
of the code behind an app will give you an advantage in the design process.

In this and future exercises, you’ll discover how Swift code — the same language used by
professional app developers around the world — powers the features of an app.

One last thing: don’t worry about mistakes. All coders get stuck — from the newest beginner
to the most seasoned expert. You won’t need any of the code from these exercises, so use
them to play, explore and get curious.

Get ready to write your first lines of Swift!

10

Pages

Additional 
code files

Coding area

To get started, download the Swift Playgrounds app from the App Store. It’s available for both Mac
and iPad. Instructions in all Explore Code exercises are for Mac.

Open the app. To make a new playground, find the More Playgrounds section at the bottom of the
screen and choose Blank, or choose File > New Blank Playground. A playground starts with one page
named “My Playground”. You’ll add more pages in coming code explorations. Double-click your new
My Playground to open it. You’ll see the window below:

Hello, World!
Download the Swift Playgrounds app and
create a new playground.

Explore Code 11

Hello, World!
Add a line of code that will display text in
the console.

Look for the blue text that says “Click to enter code” in the coding area, and enter the following  
Swift code:

print("Explore Code!")

Run your code by clicking the Run My Code button in the lower right.

This code produces a message in the console. Notice that a red badge has appeared on the button in
the lower right.

That’s the console button. Click it to display the output of your program to the right of your code.

print("Explore Code!")

Explore Code 12

Explore Code!

Hello, World!
Review your work and try a challenge.

Your playground page should now look like this:

Explore Code 13

Congratulations! You’ve just completed your first code exploration.

Challenge: Programmers who are first learning a new language usually write a simple program that
produces just the message “Hello, World!” You’re now ready to do this in Swift. Give it a try and join
the ranks.

Hints: Replace the characters in between the two quotation marks. Leaving matching quotes at the
beginning and the end is very important. Did you remember to click Run My Code again?

Explore Your Users

Pick one of the challenges and gather
information about individuals who
experience it. Each person is different.  
It’s important to think broadly to capture 
as much diversity as you can.

Good design is user-centred. You’ve had a
good start by thinking about the challenges
that you and others face. Keep it going! By
narrowing down from the general to the
specific, you’ll place individual people at
the core of your process.

Personal stories from real people can give
you perspective you might not otherwise
have. Consider interviewing people from
your community to create authentic profiles.

Define | Discover 14

Who is this person? How do they describe themselves?

How old are they? What are important aspects of their environment?

How do they describe the challenge they face?

What do they most want in a solution? How would it make their lives easier?

In which specific circumstances might they use an app that addresses their challenge?

A father of two, kindergarten teacher, taking online classes in photography.

31 Live in an apartment on the third floor. Not enough space for large bins in the
house, so they only have a small recycling container.

I don’t really understand what’s recyclable and what belongs in the rubbish. The labels are hard to find,
and I don’t really how to distinguish between things like different kinds of paper.

I need help quickly identifying what’s recyclable. If I could sort through items quickly every evening, I’d be
more likely to spend mental energy on it, since my kids deserve as much energy as I can give them.

I could spend a little time every evening with my kids sorting through our daily waste.

Example

Define | Discover 15

Explore Your Users

Pick one of the challenges and gather
information about individuals who
experience it. Each person is different.  
It’s important to think broadly to capture 
as much diversity as you can.

Good design is user-centred. You’ve had a
good start by thinking about the challenges
that you and others face. Keep it going! By
narrowing down from the general to the
specific, you’ll place individual people at
the core of your process.

Personal stories from real people can give
you perspective you might not otherwise
have. Consider interviewing people from
your community to create authentic profiles.

Who is this person? How do they describe themselves?

How old are they? What are important aspects of their environment?

How do they describe the challenge they face?

What do they most want in a solution? How would it make their lives easier?

In which specific circumstances might they use an app that addresses their challenge?

Languages

Cultures

Economic circumstances

Living situations

Genders

Disabilities

AgesConsider Diversity
Identify things about your users you may
have overlooked.

A user’s identity and circumstances will
have a huge impact on how they’ll
experience and use an app. Summarise  
all your users with these different aspects  
in mind.

Everyone has biases that affect the way
they perceive the world. Compensate for
your biases so that they don’t creep into
your app’s design.

Did you identify something that you didn’t
consider when imagining your audience?
For example, were all your users a similar
age? Consider going back to the earlier
exercises with your new insights in mind.

Define | Discover 16

The age range of the users is:

15 to 30

Our app will be used in this environment:

Our environment will have these limitations:

Inside, with a connection to Wi-Fi or mobile reception.

Users may have their hands full.

When designing our app, we need to consider:

Users might not know what qualifies as a recyclable.

Our app will be opened when …

Throwing things in the rubbish or recycling.

Example
Summarise Your Audience
Summarise your findings about individual
users. Refer to your earlier research and
use it to draw some conclusions.

What’s the most important concern in a solution?

Define | Discover

Understanding the percentage of rubbish vs recycling.

17

What’s the most important concern in a solution?

The age range of the users is:

Our app will be used in this environment:

Our environment will have these limitations:

When designing our app, we need to consider:

Our app will be opened when …

Summarise Your Audience
Summarise your findings about individual
users. Refer to your earlier research and
use it to draw some conclusions.

Define | Discover 18

!Define

Now that you’ve identified who your app serves and the challenges
they face, it’s time to get specific. By the end of this stage, you’ll
have a clearer picture of the form your app might take.

You’ll look at the root causes of your users’ challenges. And you’ll
use them to drive feature ideas that take advantage of key iOS
capabilities, while contrasting your ideas with existing apps.

AnalyseAnalyse Causes
Research Competitors
Leverage Capabilities

19

Users are having this problem:

This happens because:

This is because:

Which is because:

And the result is this core problem:

It’s easier to throw everything into one bin.

They struggle to differentiate between rubbish and recycling.

Recycling seems complicated and hard to remember.

People are rarely taught how to recycle.

Educating people on what qualifies as recycling, and gamifying the experience so they can hold
themselves accountable with their peers.

We can solve this issue in our app by:

Example
Analyse Causes
Dig deeper into the issues you’ve observed
and find the core problem. Then consider
how your app could solve it.

Asking why something happens will help
you discover hidden causes behind what
you observe directly. The deeper you dig,
the closer you’ll get to the core motivating
need for your solution.

Create as many copies of the following
template as you need to describe the
problems you’ve identified in your research.

Define | Analyse

They’d like to begin recycling but struggle to hold themselves accountable.

20

Analyse Causes
Dig deeper into the issues you’ve observed
and find the core problem. Then consider
how your app could solve it.

Asking why something happens will help
you discover hidden causes behind what
you observe directly. The deeper you dig,
the closer you’ll get to the core motivating
need for your solution.

Create as many copies of the following
template as you need to describe the
problems you’ve identified in your research.

Define | Analyse 21

Users are having this problem:

This happens because:

This is because:

Which is because:

And the result is this core problem:

We can solve this issue in our app by:

This app is interesting because: I like/dislike this app because:Research Competitors
Find and describe apps that relate to the
problem you’ve identified.

Discover what people are currently using 
to solve the problem. Search the App Store
for similar apps to find out what users 
enjoy or dislike about their solution. This 
will give you insight into what your app 
will be competing with.

Define | Analyse 22

Leverage Capabilities
Note iOS capabilities that you might use
in your app.

iOS comes with an array of great
technologies for addressing how users
want to interact with an app. You’ll see
many listed here, but keep in mind that
there are many more.

What features do your competitors have
in common that you might need to use in
your app? Which features might be
game changers?

Visit the iOS Human Interface
Guidelines site and look at User
Interaction and System Capabilities  
to learn more.

Define | Analyse 23

 iOS Human Interface
 Guidelines site

Map
Display interactive maps that locate the
user, provide directions, indicate points of
interest, display satellite images and more.

Near field communication
Detect when your device is near  
a sensor to interact with payment  
systems and more.

Augmented reality
Place virtual objects in the world that  
users can see and interact with on screen. 

Image processing
Use sophisticated algorithms to adjust
images and apply filters. 

Speech recognition
Convert spoken audio into text. 
 

Haptics
Provide feedback through touch by
vibrating the device. 

Machine learning
Use sophisticated algorithms to analyse and
categorise visual, auditory, textual and other
forms of information.

Camera
Use the built-in front and back cameras and
their powerful processing capabilities.

Bluetooth®
Communicate wirelessly with nearby
devices using a standard, secure, low-
power interface.

GPS
Locate the device anywhere in the world
and look up corresponding information,
such as country and city.

Context menus
Provide quick access to actions for an
onscreen object. 

Microphone and speakers
Capture and play back high-fidelity  
stereo audio. 

Drag and drop
Move items by pressing and dragging. 
 

Accelerometer and gyroscope
Track the device’s orientation and
movement. 

Widgets
Display information related to your app
on the Home Screen, in a variety of sizes
and styles.

Notifications
Provide updates to the user on the Lock
Screen when they’re not using your app.

https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios
https://developer.apple.com/design/human-interface-guidelines/ios

Explore Code

In this exercise, you’ll:

• Create a new page.

• Import a framework.

• Learn about the live view.

• Display an interactive map.

Map
A major component of coding is recognising what work has already been done for you and
figuring out how to use it. The many advanced built-in capabilities of iOS are organised in
frameworks.

In this exercise, you’ll display an interactive map using an iOS framework. To start, be sure
“My Playground” is open in the Swift Playgrounds app.

24

Map
Create a new page and add code to create
a map.

Explore Code 25

If it’s not showing, open the sidebar by
clicking . To create a new page, hover
your mouse next to “Pages” and click the

 button, or choose File > New Page.

Change the page title to “Map”. While
you’re editing page names, right-click the
“My Playground” page, click Rename,
then type “Hello World” to give it a more
descriptive name.

In the editor, type the following Swift code:

MKMapView()

You’ll get a red dot, indicating an error:

MKMapView()

Map
Import the MapKit framework.

Explore Code 26

This is the right code to create a map, but MKMapView is in a specialised framework.
You’ll need to import that framework to use it in your code.

Above your first line of code, enter:

import MapKit

Your code should now look like this:

import MapKit
MKMapView()

import is a Swift keyword. Keywords have special meaning in Swift that sets them apart from
the rest of your code.

Now that you’ve imported the MapKit framework, the error will go away. Click Run My Code.

The code runs, but you won’t see a map. To view it, you’ll need to do one more thing.

Swift uses different font styles and
colours (syntax highlighting) to help

you read your code.

Map
Import the PlaygroundSupport framework
and display the map.

Explore Code 27

You’ve created a map, but displaying it requires another framework. The PlaygroundSupport
framework lets you control aspects of the playground itself. Enter one more line of code above
the first line:

import PlaygroundSupport

Then add the highlighted code to the beginning of the final line:

PlaygroundPage.current.liveView = MKMapView()

Be sure to include a space both before and after the equal sign. Your completed playground
should now read:

import PlaygroundSupport
import MapKit
PlaygroundPage.current.liveView = MKMapView()

 Now run your code.

The live view in the playground opens to display the map you created. You can interact with it
as you would any app that embeds a map. Try clicking and dragging to display different regions
of the map. If you’re using a trackpad, use two-finger gestures to zoom.

Map
Review your work.

Explore Code 28

Your completed exercise should now look like this:

This is a simple example of the power of Swift frameworks. You get a large body of familiar
functionality just by importing the ones you want. In fact, other than the import statements
themselves, it took just one line of code to create the map and show it in the live view!

!Define

You’re ready to put together a concrete plan for your app. By the
end of this stage, you’ll have a concise, well-defined plan that you
can begin building into a prototype.

You’ll build your plan by identifying key differentiators, setting
goals, and then narrowing down your feature set to exactly  
those you’ll need to test whether your app will impact real users.

PlanFind Differentiators
Define Features
Prioritise Features
Describe Key Functions
Define an MVP

29

Our app will be different from these apps by:Find Differentiators
Create a list of ways your app will be
different from existing apps.

Your app’s differentiators set it apart 
from others in the market.

A differentiator is a core feature of  
your app. The following things are 
not differentiators:

• Style, such as colour, fonts, icons 
and images.

• Arrangement of onscreen items.

• How screens are organised.

Define | Plan 30

Explore Code

In this exercise, you’ll:

• Learn how to separate models and views.

• Create variables.

• Discover another way to display text.

Model and View
As a designer, your focus is largely on the visible interface and usability of your app. Developers
use the term ‘view’ to describe the parts of an app a user sees and interacts with. The model of
an app defines its data. It’s a companion to the app’s views, and equally important.

Developers separate views from models because they’re independent. A view might display
different model data at different times, and the same model data might appear in multiple views.

In this exercise, you’ll create model data and display it in two different views.

To start, be sure “My Playground” is open in the Swift Playgrounds app. Then create a new
page and name it “Model and View”.

31

Model and View
Display text data in the console.

Explore Code 32

Enter the following line of Swift code:

"Explore Code!"

This text value is a model. If you run your code now, the text will be created but you won’t see
anything. But you’ve already displayed data using print(). The console is a kind of view, and
the print() command adds a line of text to it.

Add the following line of code, being sure to keep the first line; you’ll come back to it.

print("Explore Code!")

Run your code, and open the console to see the message.

"Explore Code!"
print("Explore Code!")| Explore Code!

Model and View
Display text data in the live view.

Explore Code 33

The console is useful for developers to examine data in their app, but it’s not visible to the user.
To display text on a user’s device, you’ll need another kind of view. Insert the following code at
the beginning of your playground:

import SwiftUI
Now add the following line at the end of your playground to create a view to display the string:

var textView = Text("Explore Code!")

You’ve created a new view for your text. Now it’s time to display it using the live view. Add two
more lines of code as highlighted below:

import PlaygroundSupport
import SwiftUI

"Explore Code!"
print("Explore Code!")
var textView = Text("Explore Code!")
PlaygroundPage.current.setLiveView(textView)

Now run your code to see your text in the live view.

The equal sign
associates the value on
the right with the variable
on the left. This is called
assignment to a variable.

Text is a kind of view that can
display text data, which you
provide in parentheses.
textView is a variable

declared using the
keyword var. You use
variables in Swift to refer
to things by name.

Adds playground support.

Sets the Text view as the
current page’s live view.

Model and View
Create a model using a variable.

Explore Code 34

Notice that you’ve entered “Explore Code!” as a text value three times. It’s not just repetitive — a
typo in one value would break your intention to make all three represent the same model data.

You’ve just learned to create a variable to refer to something by name. You can use the same
technique here with your text data. Update the line where you first created the value "Explore
Code!" by assigning it to a new variable.

var message = "Explore Code!"

Now you can use the message variable anywhere you want to refer to this text. Replace the
remaining instances of "Explore Code!" with message. Your completed code should now
look like this:

import PlaygroundSupport
import SwiftUI

var message = "Explore Code!"
print(message)
var textView = Text(message)
PlaygroundPage.current.setLiveView(textView)

Run your code. As before, you should see this text value
displayed in both the live view and the console.

You’ve taken the final step to separate your model from its views. The variable message stores
the model text "Explore Code!", and you’ve displayed it in two different views.

34

Model and View
Review your work and try a challenge.

Explore Code 35

Your completed exercise should now look like this:

A major part of developing an app is defining and creating the models and views that power it.  
By separating the two concepts, you can focus on them separately. Consider the kinds of models
and views your app might have as you continue designing.

Challenge: Experiment with changing the text you assigned to message and observe the result.

Current

recycling apps what is considered recycling.

Log rubbish and recycling. Scan product barcodes to determine
recyclability.

Educate about what is recyclable. Provide quick links to environmental causes.

Shop for environmentally friendly products  
that reduce rubbish. Breakdown of rubbish to recycling.

Encouraging recycling through gamification. Communicating with smart bins to calculate
weight automatically.

Creating challenges to spark ideas. Letting users shop for recycling supplies like
bins, bags and magnets.

have focused primarily on

As a baseline, our app will need to:

Our app will be different by:

Example
Define Features
Summarise the baseline and differentiating
features of your app.

Establishing clear, achievable goals helps
you focus on the problems you’re trying  
to solve, and the way you’re hoping to  
solve them. All of your previous research
will help you define the basic features and
differentiators of your app.

Define | Plan 36

Current have focused primarily on

As a baseline, our app will need to:

Our app will be different by:

Define Features
Summarise the baseline and differentiating
features of your app.

Establishing clear, achievable goals helps
you focus on the problems you’re trying  
to solve, and the way you’re hoping to  
solve them. All of your previous research
will help you define the basic features and
differentiators of your app.

Define | Plan 37

Explore Code

38

In this exercise, you’ll:

• Learn about strings.

• Create a string with concatenation.

• Create a string with interpolation.

Strings
Just about every app displays text, and many allow the user to enter it using the keyboard. In
Swift, the concept of text — and all that you can do with it — goes by the name ‘string’. You’ve
already used strings to create values such as “Explore Code!” In this exercise, you’ll explore
more of what you can do with strings.

To start, be sure “My Playground” is open in the Swift Playgrounds app. Then create a new
page and name it “Strings”.

Strings
Create a string with concatenation.

Explore Code 39

The simplest way to work with string values is to simply enter text between matching double
quotes. Create two new strings by entering the following code:

"No Palm Oil Challenge"
"Pick Up Trash Challenge"

Note the common text, “Challenge”, in each string. Now imagine that your app might want to
create many such strings on the fly. Swift allows you to compose strings from multiple parts.
Start by defining a new variable below to store the unchanging text:

var challengeString = "Challenge"

Use another variable for the changing beginning of the string by entering the following code:

var name = "No Palm Oil"

You can combine these two strings using the “+” operator. This is called string concatenation.
Enter the following two lines to create a new string and print it.

var noPalmOilChallenge = name + challengeString
print(noPalmOilChallenge)

Run your code, and open the console to see the message.

Strings
Create a string with interpolation.

Explore Code 40
Run your code and review the Console output.

Another way to compose strings is with string interpolation, which is similar to filling in the blanks in a
sentence. Think of it as a placeholder that will insert the value of name when the string needs to be used.

"\(name) Challenge" … is like … "________ Challenge"

Use string interpolation to produce the same “No Palm Oil Challenge” string by entering the following
code:

var anotherNoPalmOilChallenge = "\(name) Challenge"
print(anotherNoPalmOilChallenge)

Notice that the constant part of the string is coloured red, while the interpolated part is black. This is
another great example of syntax highlighting.

String interpolation is powerful. For example, it works with numbers. Enter the following code:

var pointsForCompletion = 8
print("You could score \(pointsForCompletion) points by completing it.")

A string can have any number of interpolated values. Enter the following code to substitute both the
name of the challenge and the number of points in one longer string:

print("Complete the \(noPalmOilChallenge) to score \(pointsForCompletion)
points!")

This is a placeholder that will
insert the value of name when
the string needs to be used.

Strings
Review your work and try a challenge.

Explore Code 41

Your completed exercise should now look like this:

Challenge: Experiment with what you’ve learned about constructing strings. Try assigning your  
given name to givenName and your family name to familyName, then construct fullName using
concatenation (+). Use interpolation to embed them in a string like so: “My full name is _____ _____.”
Can you add your age? Review the earlier explorations and try to display this using a text view.

Log rubbish and recycling.

Current

recycling apps what is considered recycling.

Scan product barcodes to determine
recyclability.

Educate about what is recyclable. Provide quick links to environmental  
causes.

Let users shop for environmentally  
friendly products that reduce rubbish.

Provide a breakdown of rubbish  
to recycling.

Encouraging recycling through  
gamification.

Communicating with smart bins to  
calculate weight automatically.

Creating challenges to spark ideas. Letting users shop for recycling  
supplies like bins, bags and magnets.

have focused primarily on

As a baseline, our app will need to:

Our app will be different by:

1

2

7

3

4

8

5

9

6

10

Example
Prioritise Features
Make a copy of the previous exercise.
Annotate the most important features  
and order them by priority. Ask yourself
which features are absolutely necessary.
Can you pare your list down to three 
or four key features? Do you need to
reorder your priorities?

Identifying the most important features 
of an app helps you work towards your
minimum viable product (MVP). Your first
iteration of the app should include just the
features necessary to validate your idea.

To avoid ‘feature creep’, it’s important  
to distinguish between must-have  
features and those that would be great
enhancements. Clear, minimal focus is
essential to the success of the design
process.

Define | Plan 42

For this feature:

Log rubbish and recycling

Add log entry Select either weight or item

Describe items How much they recycled on what day

Record-keeping of past items Day, week, month

The user will need to be able to do and see these things: Notes:

Choose a day that recycling was done

Default to today’s date Might need a quick jump to ‘today’

Browse past dates

Share log entry to social media

Example
Describe Key Functions
For each priority feature, describe its key
functions. Copy and paste this slide as
many times as you need.

List information the user will see and
actions that the user will take. Add notes  
to clarify your thoughts or ask questions
that you’ll want to come back to as you
work on your design.

Don’t think in terms of user interface (UI)
yet. Elements such as buttons, tabs and
icons are supported and defined by the
data and actions in your app. The better
you understand them, the better your
design will fit your MVP features.

Define | Plan 43

Describe Key Functions
For each priority feature, describe its key
functions. Copy and paste this slide as
many times as you need.

List information the user will see and
actions that the user will take. Add notes  
to clarify your thoughts or ask questions
that you’ll want to come back to as you
work on your design.

Don’t think in terms of UI yet. Elements
such as buttons, tabs and icons are
supported and defined by the data and
actions in your app. The better you
understand them, the better your design
will fit your MVP features.

For this feature:

The user will need to be able to do and see these things: Notes:

Define | Plan 44

For this feature:

Log rubbish and recycling

Add log entry Select either weight or item

Describe items How much they recycled on what day

Record-keeping of past items Day, week, month

The user will need to be able to do and see these things: Notes:

Choose a day that recycling was done

Default to today’s date Might need a quick jump to ‘today’

Browse past dates

Share log entry to social media

Example

1

2

3

4

5

6

7

Define an MVP
Go back to your Describe Key Functions
slides, or duplicate them, and prioritise
based on what is most important and
crucial to implementing the feature.

You’ll base your MVP on the features you
identify here.

Remember that you’re not your user.  
If you get stuck, think about what would
most help the user achieve the goals 
you identified.

Define | Plan 45

It’s time to build a working Keynote prototype of your app. You’ll start
by mapping screens to form an app architecture, then apply basic  
UI elements to create a wireframe. Then you’ll refine your prototype
using common design guidelines to ensure that it meets an iOS user’s
expectations. And finally, you’ll define the personality of your app with
colour, icons and more.

Prototype

46

Prototype

An app map is a set of outlines that describe the information and
functions on each screen — and how they relate to each other.  
By the end of this stage, you’ll have a set of screen outlines with
well-defined groupings and relationships.

By mapping your app, you define its architecture. iOS users have  
a set of expectations — a mental model — for the way an app
should behave. They expect related information to be grouped
together, and for activities to be easy to navigate. You’ll derive  
your app’s architecture from the key functions of the MVP, making
decisions based on how you expect users to work with the app.

MapOutline Screens
Group Screens
Link Screens

47

Outline Screens
Review the key functions of your MVP and
organise them into screens, describing the
content and actions of each.

The key functions you listed have natural
relationships that suggest which ones
belong together. Feel free to break up a
function into more than one item in a screen
outline, or combine several key functions
into one item. Your notes will help you make
these decisions.

Try to keep each screen focused on a single
concept or activity, summarised in its title,
without worrying about how many there 
are. Next you’ll organise them in a way that
users understand.

You’ll work with these outlines in the map
stage. During the wireframe stage, you’ll
translate your screen outlines into the 
text, images, controls, icons and other 
UI elements in your app.

Prototype | Map 48

Itemised list of today’s
recycling

Day Summary Item Detail Calendar View Add Item

Submit items

Summary of today’s
recycling

View details for a logged
item

Type of item

Weight

Date

Calendar with current date

Summary of the month’s
items

View a day’s recycling log

Select rubbish or recycling

Select by weight or by item

Input details: date, type,
weight

Recycling information

Cancel entry

Add new items to rubbish or
recycling

Example

Prototype | Map 49

Screen title

Key functions

Outline Screens
Review the key functions of your MVP and
organise them into screens, describing the
content and actions of each.

The key functions you listed have natural
relationships that suggest which ones
belong together. Feel free to break up a
function into more than one item in a screen
outline, or combine several key functions
into one item. Your notes will help you make
these decisions.

Try to keep each screen focused on a single
concept or activity, summarised in its title,
without worrying about how many there 
are. Next you’ll organise them in a way that
users understand.

You’ll work with these outlines in the map
stage. During the wireframe stage, you’ll
translate your screen outlines into the 
text, images, controls, icons and other 
UI elements in your app.

Prototype

Now create one slide per screen outline
and copy your outlines to the slides.

To copy a screen outline, click and drag
to select all of its boxes. Copy, then paste
them to the blank slide in your prototype,
and drag them into position.

1. Create a new Keynote file.

2. Open the Document inspector or choose  
View > Inspector > Document.

3. Under Slide Size, choose Custom Slide Size.

4. Enter 375 for width and 812 for height.
Click OK.

5. Open the Format inspector or choose View >
Inspector > Format.

6. Under Background, select Colour Fill and
choose light grey (or another background to
contrast with white).

7. At the top of the inspector, use the Change
Master button to select the Blank master slide.

Prototype | Map

Create a new Keynote file for your
prototype and add a slide for each 
screen outline.

It’s time to begin creating your app
prototype in a new Keynote document.
Keynote is a great way to make a 
prototype that you can view on the 
device you’re testing on.

50

Explore Code

In this exercise, you’ll:

• Learn about structures.

• Learn about naming.

• Use code comments.

Data and Naming
Text isn’t the only kind of data in an app. Swift can work with many other common kinds of
values, such as numbers and dates. Different kinds of data are called types. All data in Swift
belongs to a type — including ones you create to represent the information your app works
with. In this exercise, you’ll create your own customised type.

To start, be sure “My Playground” is open in the Swift Playgrounds app. Then create a new
page and name it “Data and Naming”.

51

To create your own data type in Swift, you’ll use a structure. Each customised structure in your
code should have a recognisable and understandable name — for example, Challenge,
RecyclingItem and Achievement. By convention, the name of a type always begins with a
capital letter. Spaces aren’t allowed in type names; if you need more than one word to describe a
type, use camel case to capitalise the first letter of each word.

Enter the following code to create a structure (denoted by the keyword struct). Be sure to include
the curly braces, which you’ll find near the P on your keyboard.

struct Challenge {
}

You can create a new challenge value (an instance) by typing its name followed by parentheses.
Add the following code to create two instances of Challenge and assign each to an identifier:

var noStraws = Challenge()
var pickUpTrash = Challenge()

A structure instance is basically a value like any other. Try printing both to the console:

print(noStraws)
print(pickUpTrash)

You can see that while they’re two different instances assigned to two different variables, there’s
nothing to distinguish one challenge from another.

Data and Naming
Define and name a structure.

Explore Code 52

Data and Naming
List the properties of a structure.

Explore Code 53

Obviously no two challenges are alike. Consider what distinguishes one challenge from another.
Which properties will the Challenge type need to support the app’s functionality? Making a list
or diagram can help:

The next exploration will show how to add properties inside the definition of a type. But for now,
you can use comments in your code to plan. Swift will ignore anything you type from after two
forward slashes (//) all the way to the end of the line. Programmers use comments to take
notes and describe their code.

Enter some comments as placeholders for the Challenge structure’s properties between curly
braces. You can replace them with code later.

struct Challenge {
// title - the name
// points - scored upon successful completion
// is team - true of a team effort, false if solo
// end date - when it will no longer be offered

}

struct Challenge

Unique title

Number of points for
successful completion

Specific end date and time

Is it a team challenge,
yes or no?

Data and Naming
Review your work.

Explore Code 54

Your completed exercise should now look like this:

Challenge: Think about the kinds of data you’ll need in your own app. Create a new structure
for each type, and use comments to describe their properties.

Group Screens
Group your screen titles into categories  
and name them. Use the SF Symbols  
app to choose an icon that best describes
each category. Then highlight the default
screen for each category.

The architecture of an app often breaks
down into several global categories  
of activities that the user can switch
between fluidly. These screen groups 
will translate into UI elements in the 
next stage of prototyping.

Don’t worry if your screens don’t  
fall naturally into multiple categories. 
Some apps focus on just one activity.

A one- or two-word summary of what these categories are about:

Prototype | Map 55

Log Challenges Achievements

Enter Global Code

Enter Challenge

View Results

Challenges

Achievements

View AchievementAdd Item

Calendar View

Item Detail

Day Summary

Recycling

Example

Group Screens
1. Copy the title box for each screen

outline here.

2. Group the screen titles into categories.

3. Duplicate the Category box as needed
to provide titles and icons for each
group of screens.

4. Choose the title of the main screen for
each category and highlight that box.

Prototype | Map 56

Category

Screen Title

Screen Title

Screen Title

Screen Title

Screen Title

Prototype

 1. Order the screen
outlines by group.

2. For each group, use
the main screen as
the parent and drag
the others below it 
as children.

Prototype | Map

Use the slide navigator to group screen
outlines by category.

57

Explore Code

In this exercise, you’ll:

• Define properties for a structure.

• Use different data types.

• Supply values for an instance of  

a structure.

Types and Properties
The structures you create are determined by the data in your app. You organise each thing
your app represents by grouping related data together and giving it a name. In Swift, you
define a structure and declare its properties. In this exercise you’ll learn how to create
properties for a structure, to further your understanding of Swift types.

To start, be sure “My Playground” is open in the Swift Playgrounds app. Then open the page
named “Data and Naming”.

58

Types and Properties
Create structure properties.

Explore Code 59

Start by deleting everything but the first few lines where you created the Challenge
structure. Update the first two lines inside the structure by creating two variables:

struct Challenge {
var title: String // the name
var points: Int // scored upon successful completion
// is team - true of a team effort, false if solo
// end date - when it will no longer be offered

}

A variable inside a structure has special meaning and is called a property of the structure. You
created two properties, title and points. Each one has a type. Here’s how that works:

var title : String

Unlike the variables you’ve made previously, you didn’t assign values to title or points.
You’ll assign the values to all of a structure’s properties each time you create one.

Note the names of the two types you used. You’ve already learned about strings; the official
Swift type goes by the same name, and uses the capital letter naming convention. Int (short
for integer) is a type that represents whole numbers, such as 0, 42 and –8.

Defines the property name

Special delimiting character

The name of the type

Types and Properties
Make an instance of a struct by supplying
values for its properties.

Explore Code 60

Enter the following to start creating an instance of your challenge struct, stopping with the
open parenthesis (:

var noStrawChallenge = Challenge(

Look at the bottom of the playground. This time, there’s a code completion highlighted in  
blue that you can use as a shortcut.

Press Return to insert it into your code:

Challenge(title: , points:)

Now that your structure has properties, you’ll need to provide values for each instance.  
Each placeholder indicates the type of the property, which you replace with a specific value.
Replace the first placeholder with "No Straw Challenge" and the second placeholder
with 5 to make a specific unique Challenge instance. Then print it to the console:

var noStrawChallenge = Challenge(title: "No Straw Challenge",
points: 5)
print(noStrawsChallenge)

You can also review the values directly without printing, by clicking the result icons ()  
and () in the right margin of the code editor.

 (title: String, points: Int)

 String Int

Types and Properties
Access individual properties of a structure
instance.

Explore Code 61

You can access the values of these properties individually using dot notation. Try printing the
values of each property using the following code:

print(noStrawsChallenge.title)
print(noStrawsChallenge.points)

Run your code and review the console output.

You can also use dot notation to modify an existing structure instance. Use the equal sign to
assign a new value of the correct type to the desired property. For example, add the following
line to the end of your page:

noStrawChallenge.points = 8

Add another print line at the end to show the new modified state of the challenge using string
interpolation:

print("The \(noStrawChallenge.title) could score you
 \(noStrawChallenge.points) points!”)

Variable (structure instance)

Dot

Property name

Types and Properties
Review your work.

Explore Code 62

Your completed exercise should now look like this:

Challenge: In addition to String and Int, you can also use Bool to represent values that can
either be true or false, and Double to represent decimal numbers, such as 3.14. If you’ve created
structures for your app’s data types, practise replacing your comments with real properties and
creating instances of them.

Is there a property that doesn’t match one of those four basic types? Try to create a new structure
to represent it, then use it as the type of the property. When you create an instance, you’ll have to
create an instance of the property’s structure as well. If you’re feeling adventurous, you can take
this exercise as far as you want, nesting structures inside others to create complex data types.

Link Screens
Draw lines that connect content to the
screens you outlined and grouped.

Screens within each global category are
often organised in a sequential flow from
one to the next.

You might notice that some screens have
many outgoing lines while others have
none. Don’t worry — you’ll organise them 
in the next exercise.

Prototype | Map 63

Day Summary

Itemised list of today’s
recycling

View details for a logged
item

Add new items to rubbish
or recycling

Item Detail

Type of item

Weight

Date

Calendar View

Calendar with current date

Summary of the month’s
items

View a day’s recycling log

Add Item

Submit items

Select rubbish or recycling

Select by weight or by item

Input details: date, type,
weight

Recycling information

Cancel entry

Recycling

Numbers and descriptions
of commonly accepted
recyclable plastics

Summary of today’s
recycling

Recycling instructions

Link Screens
Copy your existing screen outlines here 
and link them together.

You’ll probably need one slide per group.
After you paste your outlines, resize them so
they all fit on the screen. Arrange the screens
so that related ones are close to each other.

Ungroup your slides before you add links.
Select all the screens and choose Arrange >
Ungroup or press Option-Command-G.

Change the colour of boxes that trigger the
presentation of a different screen. Use a
connection line to link from a coloured box  
to the screen it leads to.

Prototype | Map 64

Prototype

 For each item that
presents another screen,
add a link from that item
to the screen it presents.

To add a link to another
slide, right-click an object
and choose Add Link >
Slide or press Command-
K. Choose Slide, then
select Slide (the last item
in the list), and enter the
slide number.

Prototype | Map

Add links between related screens.

Linking slides is the process of creating  
tap targets on a Keynote slide that jump 
to a corresponding slide.

You may want to add highlights to the 
same items you just highlighted in your 
app map to make this exercise easier.

After you’ve finished, try playing your
Keynote prototype and click the links.  
(You can play your presentation on an
iPhone to get a feel for how your app 
will look and feel on a device.)

65

Prototype

A wireframe is a minimal working prototype. By the end of this stage,
you’ll have a functioning Keynote prototype that simulates the
behaviour of your app.

You’ll build a wireframe from your app’s architecture map by
converting screen outlines into a sketch of the interface. This is an
organised process, starting with the top-level navigation elements
and progressively drilling down to the elements on each screen.

WireframeCreate Tabs
Add Navigation
Create Modals
Add Interface Elements

66

Day Summary

Itemised list of today’s
recycling

View details for a logged
item

Add new items to rubbish
or recycling

Item Detail

Type of item

Weight

Date

Calendar View

Calendar with current date

Summary of the month’s
items

View a day’s recycling log

Add Item

Submit items

Select rubbish or recycling

Select by weight or by item

Input details: date, type,
weight

Recycling information

Cancel entry

Recycling

Numbers and descriptions
of commonly accepted
recyclable plastics

Summary of today’s
recycling

Recycling instructions

Example
Create Tabs
A tab bar is the most common form of
global navigation in apps. It lets people
quickly switch among different sections of
an app. Because it’s always at the bottom
of the screen and doesn’t change, users
can rely on the tab bar no matter where
they are in the app.

In the following Keynote exercise, you’ll 
add a tab bar to your prototype.

If your app doesn’t have multiple top-level
navigation categories, you might find a tool
bar useful. Use a tool bar at the bottom of  
a screen to provide important actions for
that screen.

Never use a tab bar and a tool bar on the
same screen.

Prototype | Wireframe 67

Prototype

 Set up a global tab bar.

1. Copy and paste a tab bar from
the iOS Templates+UI-Elements
Keynote presentation into a slide
of your prototype.

2. Ungroup it by right-clicking and
choosing Ungroup, or by pressing
Option-Shift-Command-G.

3. Set the names and icons of the
tab items to match your
navigation categories.

4. For each tab item, add a link from
the tab item to the main page for
that navigation category.

5. Group the tab bar again. Select  
all its items, then either right-click
and choose Group or press
Option-Command-G.

Prototype | Wireframe

Add a tab bar to your prototype screens
and link each tab to its main screen.

After you’ve finished, try playing your
Keynote prototype and click the tabs to
navigate between screens. Congratulations!
You’re one step closer to a prototype that
looks and feels like a native iOS app.

68

Prototype

 Create a tab bar for each main screen.

1. Copy and paste the updated tab 
bar into each main screen outline 
in your prototype.

2. For each main screen, use the
standard iOS blue to highlight the
icon and title of its tab; make the
other screens grey.

Create tab bars for all child screens.

1. Copy and paste the tab bars from
each main screen to its children.

Prototype | Wireframe

Add a tab bar to your prototype screens
and link each tab to its main screen.

After you’ve finished, try playing your
Keynote prototype and click the tabs to
navigate between screens. Congratulations!
You’re one step closer to a prototype that
looks and feels like a native iOS app.

69

Add Navigation
Find linear paths between the screens in
your app map.

Linear paths between screens are usually
managed through hierarchical navigation.

The navigation bar manages a sequence 
of hierarchical screens. Choosing an
onscreen item pushes the next one in from
the right, and tapping the Back button
allows the user to go to the previous
screen.

The title of the current screen appears in
the centre of the navigation bar. The Back
button appears on the left, and often takes
the title of the previous screen. The right
side of a navigation bar can contain actions
such as Add and Search.

In the following Keynote exercise, you’ll 
add navigation bars to your prototype.

Prototype | Wireframe 70

Itemised list of today’s
recycling

View details for a logged
item

Add new items to rubbish
or recycling

Type of item

Weight

Date

Calendar with current date

Summary of the month’s
items

View a day’s recycling log

Submit items

Select rubbish or recycling

Select by weight or by item

Input details: date, type,
weight

Recycling information

Cancel entry

Numbers and descriptions
of commonly accepted
recyclable plastics

Summary of today’s
recycling

Recycling instructions

 Today

Summary Today Calendar

Add Item Recycling Add Item

Item Detail Today

Example

Prototype

 For each screen in your prototype:

1. Delete its name.

2. Copy and paste a navigation bar from
the iOS Templates+UI-Elements
Keynote presentation. (Choose the
one most appropriate to this screen.)

3. Set the title of the navigation bar.  
(If the screen’s name is long, you
might choose a different title for the
navigation bar.)

4. Delete extraneous items in the
navigation bar.

5. Link the Back button to the previous
screen if applicable.

Prototype | Wireframe

Add a navigation bar to the top of each
screen outline and link their Back buttons.

71

Itemised list of today’s
recycling

View details for a logged
item

Add new items to rubbish
or recycling

Type of item

Weight

Date

Calendar with current date

Summary of the month’s
items

View a day’s recycling log

Summary of today’s
recycling

Summary Today Calendar Item Detail Today

The first screen in a modal does not have a  
Back button. If your modal moves to a secondary

screen, then a Back button is used.

Example

Submit items

Select rubbish or recycling

Select by weight or by item

Input details: date, type,
weight

Recycling information

Cancel entry

Numbers and descriptions
of commonly accepted
recyclable plastics

Recycling instructions

Add Item Recycling Add ItemDoneCancel

Modals slide up from the bottom and cover
the screen that triggered them, so they

present differently. The tab bar is no longer
visible and the navigation bar is contained

within the modal screen.

Create Modals
Identify focused activities and create  
modal screens.

Modality is a design technique that helps
people focus on a self-contained task or 
set of closely related options. A modal
presents content in a temporary mode that’s
separate from the user’s previous context  
and requires an explicit action to exit.

Always include a button that dismisses 
the modal view — in the main screen, the
navigation bar or both. For example, you
might use a Done or Cancel button. Including
a button ensures that the modal view is
accessible to assistive technologies and
provides an alternative to dismissal gestures.

Prototype | Wireframe 72

Prototype

Prototype | Wireframe

Find screens that present a focused activity
to the user and convert them to modals  
by removing the tab bar and updating the
navigation bar.

73

Add Interface Elements
Use standard iOS elements to convert your
screen outlines into wireframes.

iOS users expect standard interface
elements in apps when presented with
information, controls or navigational
elements. And iOS developers consistently
adopt a set of common practices, which
are documented in the Human Interface
Guidelines.

Prototype | Wireframe 74

!Coffee grounds

!Breakfast leftovers

!Paper

TODAY’S LOG

S M T W T F S

23 24 25 26 24 28 29

1kg

2kg

Rubbish Recycled

Day Summary

Itemised list of today’s recycling

View details for a logged item

Add new items to rubbish or
recycling

Summary of today’s recycling

Prototype

Prototype | Wireframe

Convert the remainder of your screen
outlines into UI elements.

75

1. Review the UI elements in the
Human Interface Guidelines.

2. Decide which elements will be
helpful in your app.

3. Paste the elements from the iOS
Templates+UI-Elements Keynote
presentation.

4. Create any customised elements
you need that aren’t in the template.

5. Change your screen outline boxes
from text to UI elements.

Explore Code

76

Event-Based Programming
In an iOS app, the user is in control. Their interactions are represented to your app as a  
series of events. Your app responds to each event by interpreting the user’s action and acting
on their command. You write event handlers — blocks of code that perform the work — and
attach them to interactive elements such as buttons, text fields, sliders and switches.

Consider a button in your app. How do you know when the user has tapped the button?  
The SwiftUI framework provides a Button type that detects user taps and lets you attach 
the specific action you want when the button is tapped. In this exercise, you’ll create a  
button that performs an action.

To start, be sure “My Playground” is open in the Swift Playgrounds app. Then create a new
page and name it “Event-Based Programming”.

In this exercise, you’ll:

• Create a button.

• Update the console when the button

is clicked.

• Update the value of a variable.

Event-Based Programming
Create a button that prints to the console.

Explore Code 77

Enter the following two lines to import the PlaygroundSupport and SwiftUI frameworks:

import PlaygroundSupport
import SwiftUI

Now create a button with the following three lines of Swift, being careful that the curly braces
{ }, parentheses () and double quotes " " all match:

var challengeButton = Button("Complete Challenge") {
print("Completed a challenge.")

}

From start to finish, here’s what this code does:

var challengeButton

Button("Complete Challenge")

{
 print("Completed a challenge.")
}

Now add one more line to add the button to the live view:

PlaygroundPage.current.setLiveView(challengeButton)

Creates a variable for the button.

Creates an instance of Button — a type of SwiftUI
view — and sets its title with a String value.

Defines the button’s action, which will execute each
time the button is clicked.

Event-Based Programming
Create a variable that the button will update.

Explore Code 78

Run your code. You’ll see the live view with your button. Click the console
button; you’ll see an empty console. Now click the Complete Challenge
button. You should see the result of the action appear in the console.

As the user interacts with the views in an app, the app often updates its model data in response.  
For example, you might want to keep track of the number of challenges the user has completed.

Add a variable to keep track of the total number of challenges completed and include it in your
printed string:

var numberCompleted = 0
var challengeButton = Button ("Complete Challenge") {

print("Challenge Completed! Total number of challenges completed: \
(numberCompleted).")

}

Run your code and click the button a few times.

You should see the following in the console view:

Challenge Completed! Total number of challenges completed: 0.
Challenge Completed! Total number of challenges completed: 0.
Challenge Completed! Total number of challenges completed: 0.
Challenge Completed! Total number of challenges completed: 0.

Event-Based Programming
Update the variable when the button is clicked.

Of course, you want the number of challenges to increase each time the button is clicked.

To do this, you’ll update the value of the variable in the button’s action. You’ve changed the
property of a structure instance by assigning it a new value. But this time, you have to base  
the new value on the existing value of numberCompleted. You might think to assign 1 to  
the variable as shown below:

var challengeButton = Button ("Complete Challenge") {
numberCompleted = 1
print("Challenge Completed! Total number of challenges completed:
\(numberCompleted).")

}

However, this won’t work because the variable will change from 0 to 1 the first time the button is
clicked, but won’t change afterwards.

Explore Code 79

Event-Based Programming
Update the variable when the button is clicked.

Instead, you’ll refer to the value of the variable itself when updating it. Modify your code so it
looks like this:

var numberCompleted = 0
var challengeButton = Button ("Complete Challenge") {

numberCompleted = numberCompleted + 1
print("Challenge Completed! Total number of challenges completed:
\(numberCompleted).")

}

To understand what’s happening, read the line in order from right to left:

numberCompleted = numberCompleted + 1

Run your code again. Click the Challenge Completed button a few times. Each time you
complete a new challenge, the total number of challenges completed should change in 
the console.

Explore Code 80

2. Assign the new value to
numberCompleted.

 1. Get the current value of
numberCompleted and add 1 to it.

Event-Based Programming
Review your work and try a challenge.

Explore Code 81

Your completed exercise should now look like this:

Challenge: Change the title of the button, for example, “Another Challenge Down!”

Change the code in the action to construct and print a message of your choosing.

Make a button that counts down from a starting value.

Make a button that updates the value of a String variable using the same technique you
used with numberCompleted.

Prototype

Now that you have a functioning prototype, it’s time to apply important
interface design guidelines. By the end of this stage, your prototype
will feel at home on iOS and in the hands of your users.

A solid interface design is critical to a good iOS experience. You’ll
learn about the most important properties of a good interface and
apply those lessons to make your prototype a pleasure to use.

RefineTap Targets
Content Insets
Weight and Balance
Alignment

82

Tap Targets
Users should be able to tap the icons or
buttons in your app. If the tap target is too
small, users will have trouble triggering it.  
If it’s too big, it can interfere with another
button that’s close to it.

Try to maintain a minimum tappable area 
of 44pt by 44pt for all controls.

Prototype | Refine 83

Content Insets
Many actions in iOS require the user to 
use a swipe gesture to trigger an action.

People use swipe gestures at the bottom
edge of the display to access features like
the Home Screen and App Switcher. These
gestures could cancel customised gestures
you implement in this area. The far corners
of the screen can be difficult areas for
people to reach comfortably.

In general, content should be centred 
and symmetrically inset so it looks great 
in any orientation. You should also make
sure the content isn’t clipped by rounded
corners, hidden by a sensor housing or
obscured by the indicator for accessing  
the Home Screen.

Prototype | Refine 84

Cancel

Margins Safe area

Weight and Balance
Large items catch the eye and appear more
important than smaller ones. They’re also
easier to tap, which is especially important
when an app is used in distracting
surroundings, such as in the kitchen or a
gym. In general, place principal items in the
upper half and near the left side of the
screen in a left-to-right reading context.

Prototype | Refine 85

Explore Code

In this exercise, you’ll:

• Learn how to display colours.

• Arrange views in horizontal and

vertical stacks.

• Nest stacks.

• Add other kinds of views to stacks.

Composing Views
All apps have a view hierarchy. Larger views in your app (such as a screen) contain smaller  
ones (such as lists), which contain even smaller ones (a list’s individual rows). How much 
further could you break down the hierarchy?

Views are powerful because you can compose them together in myriad ways to create intricate
and beautiful interfaces. In this exercise, you’ll get a taste of the power of view composition.

This is the only code exploration that won’t explain every line of code you write. SwiftUI is a
complex and powerful framework. To see it at work, you’ll have to forgo understanding exactly
how your code works.

To start, be sure “My Playground” is open in the Swift Playgrounds app. Then create a new
page and name it “Composing Views”.

86

Composing Views
Display a colour view.

Explore Code 87

Start by importing your two favourite frameworks:

import PlaygroundSupport
import SwiftUI

Now enter the following code. You won’t understand all of it, though you should notice that
you’re creating a new structure named ContentView and a new kind of property named
body. Be sure you’re nesting the curly braces correctly, and that you have one closing brace
for each opening brace.

struct ContentView: View {
 var body: some View {
 Colour.red
 }
}

PlaygroundPage.current.setLiveView(ContentView())

The live view should open to show a red view that fills all the available space, as shown above.
As you may have guessed, Colour is a type of SwiftUI view that simply displays a colour.

For the remainder of this exercise, focus only on the innermost code as indicated below.

struct ContentView: View {
 var body: some View {
 Colour.red
 }
}

This code defines the
views inside ContentView.

Composing Views
Arrange views in stacks.

Explore Code 88

SwiftUI provides several types of views that allow you to ‘stack’ other views inside of them.  
The VStack view can arrange many views vertically. Try it by replacing Colour.red in your code
with a VStack that arranges three differently coloured views.

import PlaygroundSupport
import SwiftUI

struct ContentView: View {
 var body: some View {

VStack {
Colour.black
Colour.green
Colour.red

 }
 }
}
PlaygroundPage.current.setLiveView(ContentView())

The HStack view arranges your views horizontally. Replace VStack with HStack and click Run My
Code again.

HStack {
Colour.black
Colour.green
Colour.red

}

Composing Views
Nest stacks.

Explore Code 89

Vertical and horizontal stacks can be placed inside each other. Replace the contents of the HStack
with the code below and click Run My Code.

You already know two other kinds of SwiftUI views. Try adding a Text view:

HStack {
VStack {

Colour.black
Colour.green

}
Colour.red

}

HStack {
VStack {

Colour.black
Text(“Hello, Colours!")
Colour.green

}
Colour.red

}

Composing Views
Review your work and try a challenge.

Explore Code 90

Your completed exercise should now look like this:

You’ve just scratched the surface of view composability in SwiftUI. Views can be nested to an
arbitrary level and combined to create the most complex of interfaces.

Challenge: There are many ways to specify Colour instances, but for now try displaying some 
other common ones using dot notation, for example, .yellow, .purple or .blue.

How many flags can you replicate with this technique?

Try adding a button (or several!) to your view hierarchy.

What kinds of interfaces can you simulate using just these five SwiftUI views?

91

z

Alignment
Alignment makes an app look neat and
organised, helps people focus while
scrolling and makes it easier to find
information. Indentation and alignment
can also indicate how groups of content
are related.

Prototype | Refine

Prototype

The last stage of prototyping is defining the personality of your app
to set it apart from its peers. By the end of this stage, you’ll have a
prototype that’s as close as it can come to a real app — one that
you’ll be proud to share with your testers.

Style encompasses a range of elements from colour and font to
icons. Now you can use your imagination to create a cohesive
identity for your app.

StylePersonality
Icon

92

Personality
Complete the style guide template to  
apply to your app.

Picking out colours, typography, images  
and icons — in other words, branding your
app — can be fun. But it’s important to 
keep accessibility in mind when choosing
these UI elements.

San Francisco Typeface
Designed to be consistent with the  
simple and clean iOS aesthetic, 
system fonts are legible and neutral.

SF Symbols
Apple created an icon set that  
supports Dynamic Type and the 
Bold Text accessibility feature.

Colour
iOS offers a range of system colours 
that automatically adapt to vibrancy 
and changes in accessibility settings.

Prototype | Style 93

Primary colour

Secondary colour

Imagery examplesIcon set

ic_name ic_name

ic_name ic_name

ic_name ic_name

ic_name ic_name

ic_name ic_name

ic_name ic_name

Typography

Prototype

Prototype | Style

Incorporating style into the provided resource.

94

1. Update important elements in your app (for
example, highlighted tabs and buttons) to
match the primary colour in your style guide.

2. Use the secondary colour sparingly, to call
attention to important details.

3. Update icons to match your style guide.

4. Update fonts to match your style guide.

5. Standardise imagery.

Icon
Use the templates to try out a few icon
designs. Make more copies of this slide if
you need to.

Your app’s icon will distinguish it on a user’s
screen from all the other apps they use on
their phone.

Make it simple
Find a single element that captures the
essence of your app and express that
element in a simple, unique shape. Add
details cautiously. An icon should have a
single, centred focus point that immediately
captures attention. If an icon’s content or
shape is too complex, its essence may not
be discernible, especially at smaller sizes.

Make it recognisable
You don’t want your users to have to
examine the icon to figure out what it
represents and what your app does;  
they should get the gist immediately.  
Using transparency or a busy background
can impede recognition. Test your icon
against varying backgrounds — dark  
and light, simple colours, patterns and
photos — so you can be sure that it 
stands out in all contexts.

Prototype | Style 95

Prototype

Prototype | Style

Create a Home Screen in your prototype
so that users can tap your app icon.

Test your icon on different backgrounds.

96

1. Create a tap target link of your icon.

2. Use the Magic Move transition from
opening your app to a launch screen.

3. Set a timer to move to the next
screen that the user will land on.

Testing your prototype will help you understand whether your ideas
and assumptions are correct. In the test phase, you’ll architect your
tests, create a plan to execute them, and prepare by gathering users
and creating a checklist.

Test

97

Test

The first part of testing your app is understanding what and how to
test. By the end of this stage, you’ll have a plan that you can use to
write your test scripts.

You’ve defined your app’s goals; how will you determine whether
you’ve achieved them? You’ve implemented a prototype; how do 
you expect it to be used? You’ll define tests that will answer those
questions, and you’ll also take a step back to think about setting
expectations — yours, and those of your users.

ArchitectDefine Tests
Create User Journeys
Define a Process
Plan an Introduction

98

Define Tests
For each goal that users want to accomplish
with your app, define the steps they’ll take
to accomplish it and describe any existing
flow the user may be in.

Before you design your tests, you need to
decide what’s important to test. Your tests
will teach you what users find useful, as
well as how well you’ve designed your app.
You’ll also learn about the assumptions you
made along the way.

If you select the right set of tests with your
broad goals in mind, the results will help
you draw clear conclusions about where
you’re on track and where you need to
correct course.

Users want to do this with our app:

Test | Architect

Add rubbish or recycling weight to a day

99

The user will have needed to complete these steps first:

Have either rubbish or recycling to throw out

Users need to complete these critical tasks:

Classify whether the item is rubbish or
recycling

Estimate the weight of the item

Submit the entry

Example

The user will have needed to complete these steps first:

Users need to complete these critical tasks:

Users want to do this with our app:

Test | Architect 100

Define Tests
For each goal that users want to accomplish
with your app, define the steps they’ll take
to accomplish it and describe any existing
flow the user may be in.

Before you design your tests, you need to
decide what’s important to test. Your tests
will teach you what users find useful, as
well as how well you’ve designed your app.
You’ll also learn about the assumptions you
made along the way.

If you select the right set of tests with your
broad goals in mind, the results will help
you draw clear conclusions about where
you’re on track and where you need to
correct course.

Create User Journeys
For each feature you want to test, use a
copy of your screen outline map to create  
a user journey map. Number and label 
each step from your previous exercises,
attaching each to the screen that the  
user will be on.

A journey map visually represents what  
a user will need to do to complete a task.
These might be interactions like taps or
swipes, but they may also include taking  
a picture, speaking into the microphone,  
or bringing their device close to an object  
in the world (for example, an NFC reader).

Test | Architect 101

Day Summary

Itemised list of today’s
recycling

View details for a logged
item

Add new items to rubbish
or recycling

Item Detail

Type of item

Weight

Date

Calendar View

Calendar with current date

Summary of the month’s
items

View a day’s recycling log

Add Item

Submit items

Select rubbish or recycling

Select by weight or by item

Input details: date, type,
weight

Recycling information

Cancel entry

Recycling

Numbers and descriptions
of commonly accepted
recyclable plastics

Summary of today’s
recycling

Recycling instructions

1. Tap a date.

2. Tap to add a new item.

3. Select Recycling.

4. Enter by item.

5. Enter details.

6. Submit.

7. Choose the new item from the list.

8. View the details.

Add and confirm a recycled item

1

2

3

4

5

6

7

8

Define a Process
Summarise the requirements and
parameters of your test.

Before you build the tests themselves,  
you should create a standardised process
for how you’ll test individual users. Having
consistent data is critical to a successful
analysis of the test results.

We plan on testing these user journeys:

Test | Architect

A list of the user journeys

102

We will record our findings using:

Paper, video, audio only, screen recording

We will show our prototype by:

Screen share, in-person

We will need the following equipment:

MacBook, iPhone, chairs, desk, camera, tripod

This person will take notes/record:

John Appleseed

We will conduct the test at:

Time, Date, Location

This person will conduct the user test:

Jane Macintosh

Example

Define a Process
Summarise the requirements and
parameters of your test.

Before you build the tests themselves,  
you should create a standardised process
for how you’ll test individual users. Having
consistent data is critical to a successful
analysis of the test results.

We plan on testing these user journeys:

We will record our findings using:

We will show our prototype by:

We will need the following equipment:

This person will take notes/record:

We will conduct the test at:

This person will conduct the user test:

Test | Architect 103

Participants can be intimidated by the word ‘test’. Make sure you let your user know that there are no
wrong answers and any feedback is useful feedback. What else might make your participant feel
uncomfortable? How might you mitigate those feelings?

If you’re recording a participant, be sure to get their consent for audio and/or video. Let the participant
know why recording is beneficial to your test. Consider what you’ll do if they decline to consent.

Participants usually want to know how much time they need to commit to the testing session. How long do
you think it will take for users to complete tasks and answer your follow-up questions?

Plan an Introduction
Create an introduction that you’ll use with
each participant.

You’ll want to set the tone prior to each test
so that all your participants have consistent
expectations. By anticipating issues that
might arise, both you and your test subjects
will feel at ease, and you’ll have the best
chance to gather useful information.

Write a short introduction about yourself and your project, and explain the goals of your test.

Test | Architect 104

Test

Now that you’ve planned your testing, it’s time to focus on the
details. By the end of this stage, you’ll have a complete set of
test scripts.

You’ll define the flow of your tests to keep the user engaged
and oriented, dig into the kinds of questions each test can
answer and prepare for the unexpected.

ScriptOutline Scripts
Write Scripts
Anticipate Errors

105

Outline Scripts
Describe each test and the order in which
they’ll be conducted. Be sure to include any
contextual information the user will need  
to complete the task successfully.

Your testing script should tell a story that
the user can relate to. The order of tasks
should create a natural flow that puts the
user into the right frame of mind and keeps
them engaged throughout the process.
Where possible, put your tests in the order
the user would encounter them in their
everyday lives.

Remember that some tasks are more
critical to test than others. What are the
most important features to test? You might
want to test those first in case you run out
of time.

For tests that don’t flow naturally from  
one to the next, it’s especially important 
to provide context so you don’t interrupt
the flow of the script. Make sure you
identify those situations and think carefully
about how you’ll keep the user focused 
and oriented.

Test | Script 106

This is the sequence of tasks to test:

Add recycling or rubbish to daily summary.

Discover information about recycling numbers.

Check their achievements.

Understand challenges to being more
environmentally conscious.

Context we should provide prior to the test:

Give the participant a group of objects that are
rubbish and recycling.

User should reach the achievement when they
successfully add recycling.

Example

This is the sequence of tasks to test: Context we should provide prior to the test:Outline Scripts
Describe each test and the order in which
they’ll be conducted. Be sure to include any
contextual information the user will need  
to complete the task successfully.

Your testing script should tell a story that
the user can relate to. The order of tasks
should create a natural flow that puts the
user into the right frame of mind and keeps
them engaged throughout the process.
Where possible, put your tests in the order
the user would encounter them in their
everyday lives.

Remember that some tasks are more
critical to test than others. What are the
most important features to test? You might
want to test those first in case you run out
of time.

For tests that don’t flow naturally from  
one to the next, it’s especially important 
to provide context so you don’t interrupt
the flow of the script. Make sure you
identify those situations and think carefully
about how you’ll keep the user focused 
and oriented.

Test | Script 107

Write Scripts
For each test, determine which questions
and observations you’ll use.

You can choose from different types of
questions when building a testing script.
You might use one or more of them for a
given test, and you might ask them (more
than once!) during a particular user journey.

Refer back to your user journeys; they’ll
help you decide when and how to gather
your data.

We want to understand more about:

Test | Script

Will users be able to successfully sort and enter rubbish and recycling into the app?

108

We could answer this by having users complete a rank order of the screen.

Looking at this screen, rank the items you see from most to least important for discarding rubbish  
or recycling.

We could gain insights for this by having users complete a task observation.

Your participant should be starting from a screen that they’re most likely to be on when discarding rubbish and
recycling. Observe and note where they’re successful or unsuccessful completing parts of the task. To gather
more information, ask what they think about completing the task.

If you were to discard these items, how might you record that in the app?

We can dig deeper about why a user makes decisions by asking about expectations.

Your participant should look at the screen and talk through what they are seeing and what they expect each
element will do. For example, if a participant mentions the ‘plus icon’, you can use it as an opportunity to ask
more questions on how it might work.

When looking at this (Today) screen, what do you expect you’ll be able to complete on this screen?

Example

We could answer this by having users complete a rank order of the screen.

We could gain insights for this by having users complete a task observation.

Your participant should be starting from a screen that they’re most likely to be on when discarding rubbish and
recycling. Observe and note where they’re successful or unsuccessful completing parts of the task. To gather
more information, ask what they think about completing the task.

We can dig deeper about why a user makes decisions by asking about expectations.

Your participant should look at the screen and talk through what they are seeing and what they expect each
element will do. For example, if a participant mentions the ‘plus icon’, you can use it as an opportunity to ask
more questions on how it might work.

Write Scripts
For each test, determine which questions
and observations you’ll use.

You can choose from different types of
questions when building a testing script.
You might use one or more of them for a
given test, and you might ask them (more
than once!) during a particular user journey.

Refer back to your user journeys; they’ll
help you decide when and how to gather
your data.

We want to understand more about:

Test | Script 109

When participants are completing a task, there might be smaller elements that you can test. Things like icon
recognition, text clarity and colour contrast can impact how the user completes the task. Consider what small
tests can happen while a participant completes tasks.

When participants get quiet, they’re usually figuring things out. You want them to talk through what they’re
experiencing. How might you gently remind them to talk through their thought process? Where might they
need a moment to think during the test?

Anticipate Errors
Make a plan for what you’ll do when the
user gets stuck or asks you a question.

It’s especially important not to lead the
user through a test. You’ll be most
tempted to step in when something goes
wrong. Your interactions can bias the
user and rob you of important insights,  
so be sure you’ve planned for how to ask
and answer questions to minimise their
influence on the test.

Participants who get stuck completing a task will often ask you for help. It’s important to dig deeper into
why they’re stuck. Ask things such as, “What do you expect it to do?” How might you get your user back
on track without leading them? What questions will help you better understand why they’re stuck in a task?

Test | Script 110

Test

You’re almost there! By the end of this stage, you’ll be ready to test
your prototype.

The quality of your data depends on the users you test with, so it’s
important to select them carefully. And you’ll want to make sure  
that you’re ready at the start to provide each participant with an
enjoyable experience.

PrepareGather Users
Last Check

111

Participant’s name Date and time LocationGather Users
Make a list of the users you’ll enrol 
in your testing, and plan a date and
location for each one.

The information you gathered in the
Discover phase will be beneficial during
testing. Select users who are directly
affected by the challenges you identified,
and who would be most likely to use
your app.

It takes at least three people to begin to
see patterns in user tests, so be sure to
enrol enough participants so that you
can accommodate a cancellation or two.

Test | Prepare 112

Last Check
Use the checklist to double-check that
you’re ready to start testing.

Be sure that the testing script will run
smoothly when talking to users. Use  
this checklist to complete a dry run of  
your testing script.

Test | Prepare 113

Are all your questions nonleading?

Can you run a question in your sketch or prototype smoothly?

Do you have a plan for how you’ll restart the task process if
the user gives up?

Does your testing script cover the features that are most
important to the goal?

Do you have a plan for where you’ll conduct the testing? Will  
it be remote or in person?

You’ll have a lot of information to digest after testing your prototype.
It’s important to summarise and draw the correct conclusions from
your testing data so that you know how to improve your app. You’ll
start by formatting your data to make it digestible. Then you’ll
summarise your observations by discovering relationships between
them. Then you’ll zoom out to root causes and identify core issues.

Validate

114

Able to enter
rubbish and
recycling.

Wished she could
enter rubbish and
recycling on the
same screen.

Unclear on what
classified
something as
recycling.

Didn’t find it
necessary to
change the date.
She wouldn’t have
entered something
after the fact.

Wanted to use the
scale because she
has one at home.

Unclear on what
Rewards and
Waterway mean.

Unsure where she
would get an invite
code from.

Would like to see
which of her friends
are participating
rather than just the
number of friends.

Likes that she can
see both active and
past challenges.

Would like to have
seen possible
achievements
rather than just
ones she’s earned.

Example

Participant: Christina Ahmed

Gather Notes
Create succinct notes from your
observations for each participant.

After user testing, you’ll have a lot of raw
data. Before you draw any conclusions, 
it’s important to convert it to a consistent
format. Don’t worry about how to organise
or categorise it.

The more you can narrow your observations
down to single, focused data points, the
easier it will be to organise them.

This activity could involve transferring and
splitting up written notes, summarising
survey answers, or analysing video or audio.

You might need many notes for each
participant. If so, consider organising 
the notes by task to be completed per
participant.

Validate | Gather Notes 115

Validate | Gather Notes 116

Gather Notes
Create succinct notes from your
observations for each participant.

After user testing, you’ll have a lot of raw
data. Before you draw any conclusions, 
it’s important to convert it to a consistent
format. Don’t worry about how to organise
or categorise it.

The more you can narrow your observations
down to single, focused data points, the
easier it will be to organise them.

This activity could involve transferring and
splitting up written notes, summarising
survey answers, or analysing video or audio.

You might need many notes for each
participant. If so, consider organising 
the notes by task to be completed per
participant.

Participant:

Form Key Insights
Look through your notes and group similar
ones. Summarise those groups as key
insights into your users’ behaviours.

An affinity diagram helps you visualise
similarities across participants and identify
patterns.

Once you start to see a pattern in your
groupings, you can summarise those
groups as key insights into user behaviour.

Don’t analyse the reasons for their
behaviour yet; just focus on finding themes.

Validate | Form Key Insights 117

Jamil Green  
Unclear on what
classified
something as
recycling.

Karla Gonzalez 
“Oh I wish that
information was
somewhere more
visible.”

Karla Gonzalez 
“I wonder what this

 is for next to
recycling?”

Jody Akana 
Threw out
recycling. Unable
to find information
about recycling
numbers.

Jody Akana  
“I don’t know if this
is recycling or not
… what does the  
5 mean?”

Users are confused about whether an
item is recyclable.

This is our key insight:

Example

Validate | Form Key Insights 118

This is our key insight:

Form Key Insights
Look through your notes and group similar
ones. Summarise those groups as key
insights into your users’ behaviours.

An affinity diagram helps you visualise
similarities across participants and identify
patterns.

Once you start to see a pattern in your
groupings, you can summarise those
groups as key insights into user behaviour.

Don’t analyse the reasons for their
behaviour yet; just focus on finding themes.

Draw Conclusions
For each task, summarise your key insights
and review them in light of your assumptions
to draw overall conclusions.

The final phase of analysing your results is
to look for big patterns. Identifying these
patterns will guide you towards decisions
about iterating on your design.

When drawing conclusions from key
insights, keep things general. Focus on  
root causes rather than particular issues.

We tested this task:

Validate | Draw Conclusions

Do users discover the information about what’s considered recycling?

119

We expected users would complete the task by:

Tapping the icon to reveal more information.

We observed this instead:

Users are confused about whether an item is recyclable.

We’ve made these conclusions:

The icon isn’t well understood.

Users have difficulty remembering recycling
numbers.

Users want a more prominent reminder of what
the recycling numbers mean.

It’s important to also tell users where to find
recycling numbers on products.

Example

We expected users would complete the task by:

We observed this instead:

We’ve made these conclusions:

We tested this task:

Validate | Draw Conclusions 120

Draw Conclusions
For each task, summarise your key insights
and review them in light of your assumptions
to draw overall conclusions.

The final phase of analysing your results is
to look for big patterns. Identifying these
patterns will guide you towards decisions
about iterating on your design.

When drawing conclusions from key
insights, keep things general. Focus on  
root causes rather than particular issues.

Look closely at your first prototype and you’ll see a world-changing
app beginning to take form. Now comes the critical phase of any
design — working towards that vision by applying all you’ve learned
during your design process. You’ll use the conclusions from your
analysis as a guide to re-evaluate choices you made throughout your
app design journey. Then you’ll revisit different elements of your design,
looking for opportunities to make improvements large and small.

Iterate

121

Interface elements Navigation

Wording

The icon isn’t well
understood.

It’s too hard to find
the button to add a
new item.

The flow for adding
a new recycling
item requires too
many actions.

Graphs and charts
don’t have enough
contrast.

Adding multiple
items requires the
user to repeat the
same flow for each
one.

Many users don’t
understand the
phrase ‘Recycling
Number’.

Example
Organise Your Conclusions
Before you use your conclusions to revisit
steps in your design process, group similar
conclusions. Seeing important themes will
help you decide where to focus your efforts.

Your conclusions may range from surfacing
important content to making it easier to
navigate the app and reducing visual clutter.

You might also discover that you’ve
misunderstood your users, or you’ve  
omitted a critical element of your test plan.

Iterate | Organise Your Conclusions 122

Go Back: Define
If your groupings include the following
topics, consider revisiting these elements
of Define.

Iterate | Go Back: Define 123

Your competitor did a feature better

Needing to use two hands

Issue not being solved

Wished for a different feature

Competitor Analysis, Differentiator

Diversity

Observe, Analyse Causes, Prioritise Features

Observe, Cause and Effect, Goal Statement

If you heard comments like these: Revisit these sections in Define

If you heard comments like these: Revisit these sections in Prototype

Unable to understand a task

Unable to read content

Unable to complete a task

A feature not being recognised

Content, Grouping Outlines, Linking Outlines

Style, Hierarchy

Global Navigation, Navigation Bar, Modals,
Elements

Feature Creep, Content

Disconnect of what the app icon means

Didn’t understand categories

App Icon

Content, Grouping Outline, Linking Outlines

Go Back: Prototype
If your groupings include the following
topics, consider revisiting these parts 
of Prototype.

Iterate | Go Back: Prototype
 124

Go Back: Test
If your groupings include the following
topics, consider revisiting these parts
of Test.

Iterate | Go Back: Test 125

If you heard comments like these: Revisit these sections in Test

Confused as to what you want them to do

I know that because you called it this

Script didn’t match thought process

Planning, Questions

Nonleading Questions, Questions

User Journey, What to Test

Learn to Code with Apple.
You don’t need prior experience to dive straight into creating apps for Apple platforms. Apple’s app development curriculum makes it easy for anyone 
to code in Swift just like the pros — whether it’s for a term in school, for professional certification or to advance your skills. Learn more at
developer.apple.com/learn/curriculum.

App Showcase Guide
Demonstrate your ingenuity by sharing your achievements with
community events, such as project demonstration events or
app showcases. The App Showcase Guide provides practical
support to help you host an in-person or virtual app showcase
event. Download: apple.com/au/education/docs/app-
showcase-guide-AU.pdf

Swift Coding Club
Swift Coding Clubs are a fun way to design apps. Activities
are built on learning Swift programming concepts in Xcode
playgrounds on Mac. Collaborate with peers to prototype
apps and think about how code can make a difference in the
world around you. Download: apple.com/au/education/docs/
swift-club-xcode-AU.pdf

126

developer.apple.com/learn/curriculum

apple.co/swiftcodingclubxcode

https://www.apple.com/au/education/docs/app-showcase-guide-AU.pdf
https://www.apple.com/au/education/docs/app-showcase-guide-AU.pdf
https://www.apple.com/au/education/docs/app-showcase-guide-AU.pdf
https://www.apple.com/au/education/docs/swift-club-xcode-AU.pdf
https://www.apple.com/au/education/docs/swift-club-xcode-AU.pdf
http://developer.apple.com/learn/curriculum
http://developer.apple.com/learn/curriculum
http://apple.co/developinswiftappshowcaseguide
http://apple.co/swiftcodingclubxcode

© 2021 Apple Inc. All rights reserved. Apple, the Apple logo, iPad, iPhone, Keynote, Mac, Swift, the Swift logo, Swift Playgrounds and Xcode are trademarks of Apple Inc., registered in the US and other
countries. IOS is a trademark or registered trademark of Cisco in the US and other countries, and is used under licence. Other product and company names mentioned herein may be trademarks of their

respective companies. App Store is a service mark of Apple Inc., registered in the US and other countries. The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and
any use of such marks by Apple is under licence. May 2021

